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Abstract. Sufficient sample sizes are needed in breed- 
ing programs to be confident, with a specified probabil- 
ity c~, of obtaining a specified number of plants of a 
desired genotype in segregating populations. We devel- 
op a method of determining the minimum sample size 
needed to produce, with specified probability c~, at 
least m individuals of a desired genotype. This method 
takes into consideration factors affecting differential 
selection of gametes, segregation at a single locus, and 
linkage among the loci of interest. We first consider 
the effects in the gametophyte (haploid level) of fit- 
ness and linkage on the frequencies of alleles at two 
linked loci, then at three or more linked loci. The 
probability of obtaining at least m successes, or occur- 
rences of the desired allele, among n gametes is given by 
a formula based on the binomial distribution. This 
probability is affected by fitness and linkage through 
their impact on the probability that a single randomly 
chosen gamete is of the desired type. Using an exten- 
sion of this approach, we examine the effects of the 
altered allelic frequencies on the likelihood of obtain- 
ing the desired genotype from a randomly chosen pair 
of gametes in the sporophyte (diploid level). A table 
and a figure show the sample size required to produce, 
with probability 0.95, m individuals of the desired 
genotype or phenotype, as a function of m and the 
probability that a randomly selected individual is of 
the desired type. 
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Introduction 

The identification and transfer of traits controlled by 
one or a few genes is a common objective of many plant 
breeding programs. The traits of interest may involve 
resistance to disease or pests, or an alteration of plant 
type affecting the horticultural value of the cultivar and 
its produce. 

Sufficient sample sizes are needed in breeding pro- 
grams for a breeder to be confident of obtaining an 
adequate number of plants of the desired phenotypes in 
segregating populations. Excessive sample sizes are 
wasteful of labor, facilities, and funds, while inadequate 
sample sizes increase the risk of failure to unacceptable 
levels. Efficient use of facilities and a high assurance of 
success require that the breeder considers the number 
of individuals or lines that must be screened to obtain a 
desired phenotype. Hanson (1959) described a method 
for determining the minimum sample size needed to 
acquire with specified probability at least one individ- 
ual of a desired genotype, assuming that the genotype is 
controlled in a simple Mendelian fashion. Since this 
method assumes that the traits being studied are con- 
trolled by one or a few genes, it also assumes that (1) the 
genes involved are unlinked, (2) the alleles of these 
genes have no influence on the survival of the genotype, 
and (3) the alleles at each locus are not subject to 
selection. If the alleles at the loci of interest are linked in 
coupling, have a positive effect on survival of the 
genotype, or are subject to positive selection, the re- 
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quired sample size is decreased. If the alleles are linked 
in repulsion, or have a negative effect on survival of the 
genotype, the required sample size is increased. 

It is often advantageous in breeding programs to 
acquire several individuals of a desired genotype, since 
additional traits of interest will usually be selected in 
later generations. Sedcole (1977) and Scully and Fed- 
erer (1993) described a method of determining the 
minimum sample size needed to acquire with specified 
probability m plants of a desired genotype, assuming 
that the loci controlling the desired phenotypes are 
inherited in simple Mendelian fashion. This method 
allows the breeder to specify the number of plants of a 
desired genotype needed. However, this method is also 
limited, because it is based on the same assumptions as 
the Hanson method, except that the Scully and Federer 
method assumes that each trait considered within the 
desired phenotype is controlled by a single gene (mono- 
genic inheritance). 

The assumptions upon which the Hanson, Sedcole, 
and Scully and Federer methods are based limit their 
usefulness, because these assumptions are not satisfied 
for many characteristics and in many breeding pro- 
grams. A locus involved in the phenotype of interest 
may not segregate in Mendelian fashion because of 
reduced fitness of either a gametophyte or a sporo- 
phyte carrying the desired allele at the locus of interest. 
Non-Mendelian segregation may also be the result of 
linkage of the desired allele to an undesired allele at a 
locus that alters allelic frequencies in viable gametes. 
Examples of loci affecting the segregation of alleles 
include Ge (Gamete eliminator), Gp (Gamete promoter), 
and X (gametophytic factor) in tomato (Rick 1965; 
Pelham 1968, 1970; Laterrot 1975), pollen killer in 
wheat, spore killer in Neurospora, and segregation 
distorter in Drosophila. In these systems, there is a 
severe reduction in the frequency of one alMic form of 
the active locus and against the alleles tightly linked in 
coupling to the eliminated allele at the active locus. 
Aberrant segregation is also frequently observed in 
segregating populations derived from interspecific 
crosses (Zamir and Tadmor 1986). This is an important 
concern, because many breeding programs involve the 
transfer of desired traits from wild species into domesti- 
cated crop species. 

In accordance with Mendel's first law, each gamete 
from a diploid individual may be viewed as an inde- 
pendent trial in which one of two alleles is chosen at the 
locus being considered. The number of occurrences of a 
given allele in a population of gametes from a single 
heterozygous individual follows a binomial distribu- 
tion. Mendel's first law is therefore the basis for the 
pivotal role of binomial theory in genetics problems 
and in questions concerning sample size. In accordance 
with Mendel's second law, the segregation of alleles at 
two or more loci is independent, assuming that the loci 

are functionally unlinked. This assumption may or 
may not be met, depending upon the genomic locations 
of the loci under consideration. Mendel's second law 
deals with the joint occurrence of events at two or more 
loci, which can be handled by standard probability 
theory for independent events. 

The goal of this paper is to extend previous 
methods to permit determination of the minimal size of 
a segregating population that must be screened to 
ensure a desired level of confidence of obtaining at least 
m plants with the desired genotype at a set number of 
loci. Factors affecting differential selection of gametes, 
segregation at a single locus, and linkage among the 
loci of interest are taken into consideration. We will 
first consider the effects in the gametophyte (haploid 
level) of fitness and linkage on the frequencies of alleles 
at two linked loci, then continue to the consideration of 
three or more linked loci. Then we will consider the 
effects of the altered allelic frequencies on the likeli- 
hood of obtaining a desired genotype or phenotype in 
the sporophyte (diploid level). In the exposition, we 
assume for simplicity that each trait is controlled by an 
allele at one locus. However, the results presented here 
are completely applicable under more general condi- 
tions, when multiple genes control a single trait. Al- 
though we view these results from a plant breeding 
perspective, the method is not limited to the plant 
kingdom and is generally applicable in genetic re- 
search. 

The model for two linked loci 

We now develop a model for the effect of linkage 
relationships between two loci. We will examine first 
the frequencies of the haploid (gamete) genotypes, and 
then the frequencies of the diploid (sporophyte) geno- 
types. Throughout this paper, we focus on the case 
of two possible alleles at each locus. This is not a 
restriction for most loci in diploid species. Consider- 
ing all possible gametes produced by an individual, 
let p denote the relative frequency of a desired allele 
at a specified locus. If differential survival and 
mutation are absent in a pool of gametes from a 
heterozygous individual, the relative frequency of each 
allele occurring at any locus is p = 0.5. The probability 
distribution of the number of occurrences, x, of a 
desired allele in a sample of n gametes is given by the 
binomial formula 

P(exactly x successes) = f(x; n, p) 

n! 
- !p 

x! (n - x )  x(1 - p ) " - x  

for x =0,1  . . . . .  n. (1) 
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The probability that there are at least m successes, or 
occurrences of the desired allele, in n gametes is 

P(at least m successes) = ~ f ( x ;  n ,p )  
x = m  

for m = 0 , ' l , . . . , n .  (2) 

The probability of at least one occurrence of the de- 
sired allele is 

P(at  least one success) = 1 - f ( 0 ;  n, p) 

= 1 - (1 - p)". (3) 

The binomial model (1) gives the probability of 
obtaining any specified number of successes, x, in a 
series of n independent observations, each of which has 
success probability p. In this general setting, (2) and (3) 
also hold. The definition of a success may be that some 
desired combination of alleles occurs at two or more 
loci, which may or may not be independent, or that a 
zygote with a desired phenotype is formed by a random 
pair of gametes. Throughout  this paper, success will be 
defined along these lines. For example, for two inde- 0.5 
pendent loci, the probability that a given gamete pos- 
sesses both desired alleles is p = PaPb, where pa and Pb 0.~ 

are the relative frequencies of the desired alleles al and 
b~, respectively. The probability that there are at least "~ 
m successes, that is, at least m gametes out of n that ~ 0.3 
possess both desired alleles, is given by equation (2) 
with p = p~ Pb, that is, with p replaced by the expression "~, 0.2 
P, Pb. The probability that there is at least one success is 
given by equation (3) with p = p~ Pb" n_ 

If tWO loci are linked, their segregation will be 0.1 
correlated rather than independent. Let desired alleles 
be denoted by the subscript 1, e.g., al, b~, and the cor- 0 

0 responding undesired alleles by the subscript 2, e.g., 
a2, b 2. If a 1 and bt are in repulsion, there must be a 
crossover between the loci to get the two desired alleles 
onto the same chromosome. 

If r denotes the percent recombination between the 
two loci, then each of the two parental genotypes 
occurs with probability 0 .5 (1 - r ) ,  and each of the 1.0 
recombinant genotypes occurs with probability 0.5r, as 
shown in Fig. 1. 0.8 

Let the recombination parameter  2 be the function 
of the percent recombination shown in Fig. 2 and 0.6 
specified by I 

r for 0 _< r < 0.5 under coupling ,,~ 0.~ 
2 = f ( r )  = 1 - r for 0 <_ r < 0.5 under repulsion (4) 

0.2 
The parameter  2 varies between 0 and 1. Using the 
parameter  2 instead of r allows us to consider both 
coupling and repulsion within a common, unified for- 0 
mulation. When 2 is 0.5, the loci segregate independ- 
ently, and there is no linkage. When )o is 0, linkage is 
complete in coupling; when 2 is 1, linkage is complete 

in repulsion. In both of these cases of complete linkage, 
the recombination rate r equals 0. If the distance 
between the two loci exceeds zero, then 2 can approach 
0 or 1 but cannot equal either of these values. 

The probabilities of the possible combinations of 
alleles at the two loci are given in the Punnett  squares 
in Table 1. In the case of coupling, 2 = r, so 0 _< 2 < 0.5, 
giving the Punnett  square in Table 1A. In the case of 
repulsion, 2 = 1 - r, so 0.5 < 2 _ 1, leading to the Pun- 
nett square in Table lB. In the case of independence, 
)o = 0.5, and the Punnett  square is the one shown in 
Table 1C, commonly found in textbooks. All three of 
these Punnett  squares are special cases of the square in 
Table 1D. 

The probability of observing a l b  1 in a randomly 
selected gamete is 0.5(1 - 2), where the degree and kind 
of linkage determine the value of the parameter  2. For a 
random sample of n gametes, the probability that at 
least one a l b  1 gamete occurs is given, based on the 

0.1 0.2 0.3 O.Z, 0.5 
r 1% recombination) 

Fig. 1. The probability of each type of gamete as a function of 
percent recombination 

0.1 

g 
1"1o 

.I r  
g 

r -  

0.2 0.3 O.Z, 0.5 
r (% recombination) 

Fig. 2. ). plotted as a function of percent recombination 
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Locus B Locus A Locus B Locus A 

a 1 a2 al a2 

b 1 0.5(1 - r) 0.5r b 1 0.5r 0.5(1 - r) 
b2 0.5r 0.5(I - r) b2 0.5(1 - r) 0.5r 

A. Coupling 

Locus A Locus B Locus B 

B. Repulsion 

Locus A 

a 1 a2 

b 1 0.25 0.25 
b 2 0.25 0.25 

C. Independence 

al a2 

b 1 0.5(1 - 2) 0.52 
b 2 0.52 0.5(1 - 2) 

D. Generalized probabilities for coupling, 
repulsion, and independence 

binomial distribution f [ x ;  n, 0 . 5 ( 1 -  2)], by equation 
(3) with p = 0.5 (1 - 2). The probability that at least m 
out of the n randomly selected gametes possess the 
genotype alb ~ is given by the sum of terms from this 
binomial distribution produced by m or more gametes 
with genotype a~bl, that is, by equation (2) with 
p = 0.5 (1 - 2). 

We now incorporate differential survival rates 
among genotypes into the analysis. Let u(g) denote the 
recombination frequency of genotype g, that is, the 
relative frequency with which this genotype is pro- 
duced. For  example, in Table 1D, u(a: b:) = u(a2b2) = 
0.5(1 - 2) and u(alb2) = u(a2bl) = 0.5 2. Let s(g) denote 
the survival rate of genotype g, which may differ from 
one genotype to another. For  example, if a gamete 
carrying the b 2 allele were nonviable at high tempera- 
tures, then the survival rates of genotypes involving b2, 
e.g., s(alb2), would be 0 under these conditions. For  
each genotype g, the fraction of gametes possessing 
this genotype and surviving is given by u(g)s(g), the 
product of the relative frequency of g and the survival 
rate of 9. In a pool of gametes, let Q denote the total 
fraction of surviving gametes; it is obtained by 
summing the term u(g)s(g) over all possible genotypes 
g: 

Q = ~o u(g)s(g). (5) 

The proport ion of these surviving gametes with geno- 
type g is denoted by v(g); it is equal to the fraction of 
gametes possessing genotype g and surviving, ex- 
pressed as a proport ion of (2, the fraction of all surviv- 
ing gametes: 

v(g) = u(g)s(g)/Q. (6) 

Under coupling, each of the parental genotypes, 
g = alb I and g = a2b2, has a relative frequency u(g) = 

Table 2. Punnett square: two alleles, with differential survival 
among genotypes. Entry for each genotype g is v(g) = u(g)s(g)/Q 

Locus B Locus A 

al a2 

b 1 0.5(1 - 2)s(albl)/Q 0.52s(a2bl)/Q 
b2 0.52s(alb2)/Q 0.5(1 - 2)s(a2b2)/Q 

0 .5 (1 - r ) ,  while each of the recombinant genotypes, 
g = alb 2 and 9 = a2bl, has a relative frequency u(g) = 
0.5r. Under repulsion, each of the parental genotypes, 
g = alb2 and g = a2bl, has a relative frequency u(g) = 
0 . 5 ( 1 -  r), while each of the recombinant genotypes, 
g = alb 1 and g = a2b2, has a relative frequency u(g) = 
0.5r. In both cases, as well as for independence, it is 
routine to verify from Tables 1A and 1B that u(9)= 
0 . 5 ( 1 - 2 )  for 9=a~b~ and g=a2b2,  u(g)=0.52 for 
g = a t b z  and g = azb 1. 

The Punnett  square under differential survival is 
then given by Table 2. Its entries are the terms v(9) of 
(6), expressed in terms of 2, s(g), and Q. For example, in 
Table 2, the term v(albl) appears as 0.5(1 - 2)s(a 1 bl) / 
Q. The entries in Table 1D have been used to express 
the relative frequency u(g) from (6) in terms of 2 for each 
g; for instance, u(a:ba) is expressed as 0.5(1 - 2 ) .  It is 
clear from (5) and (6) that Q, the total fraction of 
survivors, is the sum of the four numerators in the 
entries of this square. Consequently, the sum of the 
entries of the Punnett  square in Table 2 is 1, and the 
entries are the relative frequencies of the genotypes 
among the surviving gametes. If the survival rates s(g) 
are all equal, the Punnett  square of Table 2 reduces to 
the square of Table 1D by routine algebra. If the sur- 
vival rate of the gamete is determined by the haploid 
genotype, then the survival rate s(9) will be a product of 
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survival rates associated with individual alleles at each 
of the loci under consideration: S(g)=s~(ga)sb(gb), 
where sa is the survival rate of allele g6, which may be 
either a 1 or a 2, and similarly for b. 

To compute the terms v(g), the proportions of all 
genotypes g found among the surviving gametes, we 
must know the kind of linkage (coupling or repulsion) 
and the percent recombination r, from which we can 
find ,~, and the survival rates s(g ). Because relative 
survival rates, not absolute rates, are important,  it 
suffices to know the three ratios s(g)/s(a2b2) for 
g # a2b2. Similarly, i fa  gamete's survival is determined 
by its genotype, it suffices to know the two ratios 
s~(al)/s~(a2) and Sb(bl)/sb(b2). The probability of at 
least m successes is then given by equation (2) with 
p = v(a 1 bl). For m = 1, this reduces to equation (3) with 
p = v(a~bfl. 

Determination of required sample size 

We now derive the sample size necessary to ensure that 
the probability of obtaining at least m successes attains 
any desired value c~. Applying the general formulas (2) 
and (3) for the binomial probability model to the case 
of two linked loci, let p denote the probability v(albl) 
from equation (6) and Table 2. Let m be the number of 
successes (occurrences of this desired genotype) that we 
want to obtain in a random sample ofn gametes from a 
heterozygous plant. The desired number of successes, 
m, can take on a variety of values, depending on the 
needs of the breeder. Let c~ be the desired probability of 
obtaining at least m successes; this will be specified in 
advance, typically as a high value (e.g., 0.99, 0.95, or 
0.90) so the chance of failing to observe at least m suc- 
cesses will be small. For  given values of p, m, and ~, the 
goal is to determine the smallest sample size n for which 

P(at least m successes) > ~, (7) 

where the left-hand side is calculated from (2) for m > 1 
or from (3) for m = 1. 

The probability p can take on a wide range of 
values. In the case of two loci with no linkage, no 
differential survival, and no mutation, each of the four 
possible gametes has an equal probability (0.25). Con- 
sidering varying degrees of linkage resulting in a re- 
combination rate ranging from 50 percent (no linkage) 
to nearly zero percent (total linkage), the probability of 
a desired gamete of a parental genotype varies from 
0.25 to nearly 0.50, and the probability of a desired 
gamete of a recombinant genotype varies from 0.25 to 
nearly zero. (These possibilities are illustrated in Fig. 1.) 

To determine the smallest sample size n satisfying 
(7), P(at least m successes) was calculated for given 
values of p, m and ~ and a trial value of n. If this 

probability was less than e, a larger trial value was 
substituted for n. If (7) was satisfied, and if this re- 
mained true when n was replaced by n -  1, a smaller 
trial value was substituted for n. This process con- 
tinued until (7) was satisfied for n but not when n was 
replaced by n - 1. A computer program for evaluating 
P(at least m successes) was written in FORTRAN,  
using the IMSL subroutine D B I N D F  (IMSL 1989). 
The program runs quickly and accurately, with all 
calculations performed in double precision mode. A 
different programming approach was taken by Man- 
sur et al. (1990); their program for the IBM PC executes 
slowly as m increases and/or p decreases. 

For ~ = 0.95, the smallest adequate sample size n 
was found for selected pairs m and p. The values of m 
were 1, 5, 10, 20, 30, 40, and 50. The values of p ranged 
from 0.0001 to 0.001 in increments of 0.0001, from 
0.001 to 0.01 in increments of 0.001, and from 0.01 to 
0.50 in increments of 0.01. For  each pair m and p of 
these values, the smallest adequate sample size was 
computed. These results are graphed in Fig. 3, with 
both p and n on logarithmic scales, and the values of n 
for selected pairs m and p are shown in Table 3. The 
linearity of the curves in Fig. 3 is striking. For  each 
value of m, the required sample size n in Table 3 is 
inversely proport ional  to p when p is small. The math- 
ematical basis for this behavior is explained in the 
Appendix. Complete tables for c~ = 0.99, 0.95, and 0.90, 
and the computer program that produced them, are 
available from the first author. Other values of e can 
easily be accommodated in this program if desired. 

Example: For two loci with no linkage, no differential 
survival, and no mutation, the relative frequency of 

10 o 

10 30 

o 2 = ~  
~lO- 

n 

10 -3 . 

I0 -4. 

10 0 101 10 2 10 3 10 4 10 5 10 6 
Sempte size 

Fig. 3. Sample size n required to produce with probability 0.95 
at least m individuals of a desired genotype or phenotype, as a 
function of rn and the probability p of a randomly selected 
individual being of the desired type 
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Table 3. Table of sample size n required to produce with prob- 
ability 0.95 at least m individuals of a desired genotype or 
phenotype, as a function of rn and the probability p of a randomly 
selected individual being of the desired type 

p m 

1 5 10 20 40 

0.0001 29956 9 1 5 3 3  157049 278788 509392 
0.0002 1 4 9 7 8  45766 78523 139392 254693 
0.0004 7488 22882 39260 69694 127344 
0.0006 4992 15254 26173 4 6 4 6 1  84894 
0.0008 3744 11440 19629 3 4 8 4 5  63669 
0.001 2995 9151 15702 2 7 8 7 5  50934 
0.002 1497 4575 7850 1 3 9 3 6  25464 
0.004 748 2286 3923 6966 12729 
0.006 498 1524 2615 4643 8484 
0.008 373 1142 1960 3481 6362 
0.01 299 913 1568 2784 5088 
0.02 149 456 782 1390 2541 
0.04 74 227 390 693 1268 
0.06 49 150 259 461 843 
0.08 36 112 193 344 631 
0.10 29 89 154 275 504 
0.15 19 59 102 183 334 
0.20 14 44 76 135 249 
0.25 11 34 60 107 198 
0.30 9 28 49 89 164 
0.35 7 24 42 75 140 
0.40 6 21 36 65 121 
0.45 6 18 32 57 107 
0.50 5 16 28 51 96 

each of the four possible gametes is 0.25. A sample of 34 
gametes is necessary to ensure 95 % certainty of obtain- 
ing at least five gametes of the desired form az b~. If  the 
desired alleles, a 1 and bl, are linked in repulsion and 
the relative frequency of recombinat ion between the 
loci is 20 %, then the relative frequency of the desired 
gamete is 0.10, and a sample of 89 gametes is necessary 
to ensure 95 % certainty of having at least five gametes 
of the desired genotype a lb~. 

Example:  For  two loci possibly linked but with no 
differential survival and no mutat ion,  the value of 
p = v (a~bl) is 0.5 (1 - 2). Take m = 1; then equat ion (3) 
becomes 

c~ = 1 - [1 - 0.5 (1 -- ~,)jn. (8) 

Solving this gives an explicit formula for n in terms of 
and 2, 

n = log(1 - ~)/log [1 - 0.5(1 - 2)] 

= log (1 - ~)/log [0.5(1 + 2)]. (9) 

When  the loci segregate independently (2 = 0.5), this 
reduces to n = log (1 - c0/log (0.75), which for e = 0.95 
gives n = 10.4, so the min imum sample size is 11. When  
coupling is present between the loci (;~ < 0.5), sample 

sizes will be smaller than for independence between the 
loci; e.g., 2 = 0.4 gives p = v(a lb l )  = 0.30, and for e = 
0.95 equat ion (9) gives n -- log (0.05)/log (0.70) = 8.4, so 
the min imum sample size is 9. When  repulsion is pre- 
sent (0.5 < 2 < 1), sample sizes will be larger than for 
independence; e.g., 2 = 0.6 gives p = v(a 1 b~) = 0.20, and 
for ~ = 0.95 equation (9) gives n = log (0.05)/log (0.80) = 
13.4, so the min imum sample size is 14. These values 
(9, 11, and 14) appear  in the m = 1 column of Table 3. 
As 2 approaches the value 1, corresponding to com- 
plete repulsion, v(a~bl)  approaches 0, and the sample 
size needed to achieve a given level of probabil i ty 
increases without  bound.  In practice, the exact value of 
)~ may  not  be known,  but  should be estimated by the 
observat ion of appropria te  segregating populations.  

We end this section by pointing out  the extremely 
wide applicability of its results. To apply formulas (2) 
and (3) to the situation of two linked loci, one need only 
replace the general term p by the quanti ty v (aibj), which 
was treated in the section on two linked loci. The 
method  for determining sample size is equally appli- 
cable to three or more  linked (or unlinked) loci, where p 
will be determined by quantities of the form v(aibjck), 
and to zygotes of a desired phenotype formed by a 
r andom pair of gametes, where p will be of a form p(rg) 
to be discussed in the section on the sporophyte  level. 
In  all of these cases, once the proper  term to use for the 
probabil i ty p has been worked out, the values of m, p, 
and ~ are known and the analysis can proceed accord- 
ing to the results of Fig. 3 and Table 3. 

Three linked loci 

In the case of three loci with no linkage, each of the 
eight possible gametes has an equal probabil i ty (0.125). 
Considering varying degrees of linkage on either side of 
the central locus from 50 percent recombinat ion (no 
linkage) to nearly zero percent recombinat ion (total 
linkage), the probabil i ty of a desired gamete of a par- 
ental genotype varies from 0.125 to 0.50, the probabil-  
ity of a desired gamete of a recombinant  genotype 
involving a single crossover varies from 0.25 to nearly 
zero, and the probabil i ty of a desired gamete of a 
recombinant  genotype involving a double crossover 
varies from 0.125 to nearly zero. The speed with which 
these values approach  their limits is shown in Fig. 
4 A - D .  Let r a denote the percent recombinat ion be- 
tween loci 1 and 2, and r 2 the percent recombinat ion 
between loci 2 and 3. Then each of the two parental  
genotypes occurs with probabil i ty 0 . 5 ( t -  r i ) ( 1 -  r2), 
each recombinant  genotype with a single crossover 
between loci 1 and 2 occurs with probabil i ty 
0.5 r 1 (1 - rz), each recombinant  genotype with a single 
crossover between loci 2 and 3 occurs with probabil i ty 
0.5(1 - r l ) r  2, and each of the recombinant  genotypes 
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with a double crossover occurs with probability 
0.5 r~ r 2. These probabilities are depicted graphically by 
the surfaces in Fig. 4A-D, which show the values of the 
probabilities as functions of the pair (Q, r2). Their 
algebraic expressions appear in Table 4. The parental 
probability in Fig. 4A changes more rapidly than the 
other probabilities as a function of (r~r2); the single 
crossover probabilities in Fig. 4B, C are the same ex- 
cept that the roles of rx and r 2 are interchanged. 

Consider three loci arranged on the chromosome. 
Let the desired alleles at these loci be denoted by a~, b~, 
and c 1 and the three corresponding undesirable alleles 
by aa, b2, and c 2. Three cases, shown in Fig. 5A C, 
must be considered: coupling of a> b> and cl; coupling 
between al and b 1 and repulsion between b 1 and ca; 
and repulsion between a 1 and b 1 and also between b~ 
and c 1. A fourth case, repulsion between a~ and b 1 and 
coupling between b 1 and c~, is shown in Fig. 5D; it is 
equivalent to the case of Fig. 5B by symmetry. Let the 
recombination parameters 21 and 2 2 be the functions 
of the percent recombinations r~ and r 2 specified by 

21 = f ( r  0 

J" r 1 for 0 < rl -< 0.5 under coupling 

1 - r 1 for 0 _< r, < 0.5 under repulsion, 

2 z = f ( rz )  

r 2 for 0 < r 2 _< 0.5 under coupling 

1 -- r 2 for 0 _< r 2 _< 0.5 u n d e r  repuls ion .  

(to) 

(11) 

For the case of coupling among all pairs, 21 = r 1 
and 22 = r 2. Table 4 lists the genotypes g and their 
probabilities u(g). Survival rates s(g) behave exactly as 
for two linked loci. When there are three linked alleles, 
equations (5) and (6) remain valid, but summation is 
over the eight genotypes involving the three loci. 

To construct the Punnett  square for this situation, 
incorporating differential survival, use equation (6) 
and replace r~ and r 2 by the equivalent expressions in- 
volving )h and 2 2. The result is given in Table 5. Its 
entries are the terms v(g) expressed in terms of 2~,/~2, 
s(9), and Q. 
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Fig. 4A-D. Probabilities of parental, single crossover, and double crossover genotypes as functions of percent recombinations r 1, r 2. 
A Parental genotype: P(each parental genotype)= 0.5 (1 r , ) ( 1 -  r2). B Single crossover 1-2 genotype: P(each 1CO 1-2 geno- 
type) = 0.5r1(1- r2). C Single crossover 2-3 genotype: P(each 1CO2-3 genotype)= 0 .5(1-  r l ) r  2. D Double crossover genotype: 
P (each 2CO genotype) = 0.5r 1 r 2 



Table 4. Coupling among all pairs: genotypes and their prob- 
abilities 

Description Probability u ( g )  Genotypes g 

Parental 0.5(1 -rl)(1 - r2) a2blc 1, a262c2 
Single crossover, 0.5r1(1 -r2) alb2c2, azb2c2 

alleles 1-2 
Single crossover, 0.5(1 - r2)r 2 a2b2c 2, azb2c 2 

alleles 2-3 
Double crossover 0.hr2r 2 a2b2c2, a2b~c2 

I t  is useful to examine some special cases. When  all 
of the survival rates s(g) equal  1, then Q = 1, so the s(g) 
terms and Q d rop  out of all entries in Table  5, e.g., the 
entry v ( a l b l q  ) reduces to 0.5(1 - J ~ l ) ( 1  - - ~ 2 ) .  In fact, 
when all of the survival rates s(9 ) equal  any c o m m o n  
value, then Q also equals that  value, leading to the same 
result. When  all of the survival rates are equal and the 
three loci are independefit ,  so 21 = )~2 = 0.5, each of the 
entries in Table  5 reduces to 1/8. When  all of the 
survival rates are equal, loci 1 and 2 are independent ,  
and loci 2 and 3 exhibit complete  coupling, so 21 = 0.5 
and 22 = 0, each of the four entries in the top and 
b o t t o m  rows of Table  5 equals 1/4, while the remain-  
ing four entries all equal 0. 

Fo r  the case of coupling between a 1 and .b  1 and 
repulsion between b 1 and c 1, 21 = r 1 and 22 = 1 - r  2. 
Genotypes  atb~c 2 and a2b2c ~ are parentals,  alb2Cl 
and a2blc 2 are single crossovers at 1-2, a~blc 1 and 
a2b2c 2 are single crossovers at 2-3, and alb2c 2 and 
a2b~cz are double  crossovers.  Again the survival rates 
s(g) behave exactly as for two linked alleles and equa-  
tions (5) and  (6) remain  valid. To  construct  the Punne t t  
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square for this situation, incorpora t ing  differential sur- 
vival, use equat ion (6) and replace r t and r 2 by 21 and 
1 - 22, their equivalent expressions involving 21 and 2 a, 
respectively. The result is again the square in Table  5. 

Fo r  the case of repulsion between a I and b I and 
also between b 1 and c 1, 2 l = l - r ~  and 2 2 = l - r  2. 
The me thod  of the previous two cases leads again to the 
Punnet t  square in Table  5. The case of three linked loci, 
with the desired gamete  having a r ecombinan t  geno- 
type involving a double  crossover,  occurs c o m m o n l y  in 
the in t roduct ion of a gene f rom a wild to a domest ic  
species. In  this situation, one desires to transfer the 
gene in as small a segment of f lanking D N A  as possible. 

If  success is defined to be the occurrence of a gamete  
with genotype a lb l c  1, which happens  with probabi l i ty  
v(alblCl), then the probabi l i ty  of obtaining at least m 
successes in a group  of n r andomly  chosen gametes  is 
given by the b inomial  probabi l i ty  formula  (2), with the 
general success probabi l i ty  p replaced by its specific 
expression V(axblCl) for the si tuation of three linked 
loci. Thus,  all the results on determinat ion of required 
sample size are immediate ly  applicable here, as was 
noted at the end of that  section. Fo r  m = 1, this reduces 
to the probabi l i ty  of obtaining at least one success out 
of n r a n d o m  gametes,  which is given by equat ion (3) 
with p = v (a lb lq ) .  

To determine the sample  size necessary to make  the 
probabi l i ty  of obtaining at least m successes at ta in any 
specified value e, begin by determining v(a lblc1). Then, 
using equat ion (2) if m > 1 and equat ion (3) if m = 1, 
evaluate the expression on the equat ion 's  r ight -hand 
side for a sequence of values of n. As n increases, the 
r ight-hand side of(2) or (3) increases, so it is not  difficult 
to find the smallest value of n that  makes  the right- 

~1 bl Cl G1 bl c2 Q1 b2 Cl al b2 c2 

A 0'2 b2 c2 B 0.2 b2 ci C a2 bl c2 D 02 bl cl 

Fig. 5A-D. Arrangements of three linked loci. A Coupling a 2 b 2 and b l - c  1. B Coupling a 1 b 2, repulsion bt-c 2. C Repulsion al-b 1 
and b2-c 1. D Repulsion al-b2, coupling bl-c ~ 

Tab le  5. P u n n e t t  squa re :  th ree  alleles, w i th  dif ferent ia l  su rv iva l  a m o n g  g e n o t y p e s  

L o c u s  B L o c u s  C L o c u s  A 

a l  a 2 

b 1 c 1 0.5(1 - 21) (1 - 2z)s (a  1 b 1 c l ) /Q 0.521 (1 - 22) s(a 2 b 2 c l ) /Q  
c 2 0.5(1 - Z1)22s(alblcz)/Q 0.5212zs(aablc2)/Q 

b2 c2 0.522 22 s(a2b2q)/Q 0.5(1 - )~ 22s(a262c2)/Q 
c 2 0.522 (1 - Z2)s(alb2cz)/Q 0.5(1 - )ol)(1 - )o2)s(a2b2c2)/Q 
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hand expression equal to or greater than c~. Once the 
value of v(alblca) is known, Table 3 can be used with 
p = v(alblCl) to calculate the required sample size. 

Example: For three linked loci, assume equal survival 
rates and no mutation, and take m = 1. Then the value 
ofp = v(alblCl) is 0.5 (1 - 21)(1 - ) ~ 2 ) ,  and equation (3) 
becomes 

c~ = 1 - [-1 - 0.5(1 - 21)(1 - 22)]". (12) 

Solving this gives an explicit formula for n in terms ofc~, 
21, and 22, 

n = log (1 - ~)/log I-1 - 0.5(1 - , ) ~ 1 ) ( 1  - " ~ 2 ) ] -  (13) 

When coupling is present between both adjacent pairs 
of loci, sample sizes will be smaller than for indepen- 
dence between loci. Similarly, when repulsion is pres- 
ent, sample sizes will be larger than for independence. 
As either 21 or 2 2 approaches the value 1, correspond- 
ing to complete repulsion, the sample size needed to 
achieve a given level of probability increases without 
bound. 

Four or more linked loci 

In multiple gene selection, the t loci on a chromosome 
can be linked unless the map distance between two 
adjacent loci on the chromosome is greater than 50 
centiMorgans. The procedure described for three loci 
can be generalized easily, quantified by the parameters 
2 i, i =  1 . . . .  , t - 1 ,  defined as in (10) and (11). The 
number of possible patterns of coupling and repulsion 
increases with t. For example, for t = 4, the following 
cases all require different analyses: 

1. Coupling of a 1, b 1, c a, and dl, 
2. Coupling between a a and b I and also between b a and 
c 1, and repulsion between c 1 and da, 
3. Coupling between a 1 and ba, and repulsion between 
b~ and c 1 and also between c~ and dl, 
4. Coupling between a a and bl and also between c a and 
d a, and repulsion between bl and c~, 
5. Repulsion between al and b~, between ba and ca, and 
also between c a and d 1, 
6. Coupling between b a and c~, and repulsion between 
a~ and b a and also between c 1 and d~. 

Each of the other two possible situations (repulsion 
between a 1 and b~, and coupling between b 1 and c 1 and 
also between c a and dl; and repulsion between a a and 
b a and also between b 1 and cl, and coupling between c a 
and da) is equivalent to one of the above by symmetry. 
As with three linked loci, these situations can be integ- 
rated through a common Punnett  square whose entries 
are expressions involving the 2 d, survival rates s(g) and 
Q. Success is defined to be the occurrence of a gamete 

with genotype a 1 b 1 c 1 da, and the binomial probability 
formulas (2) and (3) apply with p = v(a 1 b 1 c 1 d 1). Again, 
Table 3 can be used with p = v(albacldl)  to calculate 
the required sample size. 

More than four linked loci can be analyzed similar- 
ly. No new concepts are involved, but the computa- 
tions grow increasingly laborious with more loci. 

The sporophyte/diploid level 

Let cg denote the conditions under which fusion of a 
random pair of gametes results in a zygote with the 
desired phenotype. The specifics of cg are determined 
by the number of loci involved, the linkage relation- 
ships among these loci, and the desired combination of 
alleles (homozygous for one allele, heterozygous, or 
either) at each locus. The probability of obtaining the 
desired phenotype at the diploid level from a randomly 
chosen pair of gametes, denoted by P(~), is then given 
by 

Pffg) = P(random pair of gametes satisfy cg) 

= ~ v ( g ) v ( g ' )  (14) 

where ~ denotes summation over all pairs of geno- 
types (g, g') satisfying ~. It then follows that the prob- 
ability of at least m successes and the probability of at 
least one success are given again by the binomial 
probability formulas (2) and (3), with the general suc- 
cess probability p replaced by its specific expression 
Pffg) for the situation at the diploid level. Thus, Table 3 
can be used with p = Pffg) to calculate the required 
sample size. 

In the examples that now follow, the expressions 
v(a~bj) will be represented by the more compact nota- 
tion vii for all i,j, and v(aibjCk) by v~j k for all i,j ,k. 
Because we are now considering desirability at the 
diploid level, the numeric subscripts of the alleles are 
now used solely for identification, and do not imply the 
desirability or undesirability of the allele. All possible 
combinations of gametes involving two loci in a di- 
ploid genome and the probabilities of these combina- 
tions are given in Table 6. Analogous tables for three or 
more loci are straightforward to produce. 

Example 1. Consider the case of two linked loci, in 
which the desired alleles are dominant at both loci A 
and B and the desired combination of alleles in the 
offspring is homozygous dominant at both loci. Then 
to obtain the desired phenotype, both randomly se- 
lected gametes must be albl ,  so P(~) = V~r Similarly, 
when the desired alleles are recessive at both loci, both 
randomly selected gametes must be a2b2, so p(c~) = v222" 
Furthermore, when neither allele is dominant at either 
or both loci, if one desires homozygosity for a given 



allele (for example, al and b2) at each locus, then P(~r 
again equals the corresponding v 2 (e.g., p(cg)= v22). 
This demonstrates that a common structure prevails 
regardless of the dominance relationship at each of the 
loci. 

Example 2. Consider the case of two linked loci, in 
which the desired alleles are again dominant at both A 
and B, but now the desired combination of alleles in the 
offspring is either homozygous dominant or hetero- 
zygous. Then the possibilities for a pair of gametes to 
satisfy conditions cg are alb 1 with any other gametes, 
and alb 2 with a2b 1. Recalling that vll  + v12 +/)21 -}- 
/)22 = 1, w e  have 

P(~) = v~l + 2vllv12 + 2VllV21 + 2VllV22 +2V12V21 

= (2 - v 11)vll -I- 2V12/)21" (15) 

Example 3. Consider the case of two linked loci, in 
which the desired alleles are now dominant at locus A 
and recessive at B, and the desired combination of 
alleles is either homozygous dominant or heterozygous 
at locus A. Then there are two possibilities for a pair of 
gametes to satisfy conditions c~: both albl, and axb i 
with a2b 1. Consequently, 

P(~) = v~l + 2vllv21. (16) 

Example 4. Consider the case of three linked loci, in 
which the desired alleles are dominant at all three loci 
A, B, and C, and the desired combination of alleles is 
homozygous dominant at all three loci. Then both 
randomly selected gametes must be alblc 1, so 
p(cg) = v211- (Similarly, when the desired phenotype is 
homozygous recessive at all three loci, both randomly 
selected gametes must be a2b2c:, so p(cg) = v222. Addi- 
tional cases of desired genotypes at the A, B, and C loci 
can be constructed in a similar manner.) 

To take a specific situation, assume that m = 1 and 
all survival rates s(g) are equal. For  specified values of 2 
in Examples 1-3 and 21 and 22 in Example 4, routine 
substitution shows that 

Example 1' p(c~) = v~ 1 = 0.25(1 - 2) 2 

Table 6. Probabilities of diploid combinations of gametes in- 
volving two loci 

Loc i  alb 1 alb 2 a2b I a2b 2 

2 
albl Ull v11o12 011021 011022 

2 
alb2 UllU12 o12 u12021 012022 

2 azbl 011021 012021 021 021022 
2 

a262 011022 012022 021022 022 
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Example 2: p(cg) = [2 - 0.5(1 - 2)](0.5)(1 - 2) 

+ 2(0.52) 2 

= 0.25(3 - 22 + 22) 

Example 3: p(c~) = 0.25 (1 - 2) 2 + 2 [-0.5 (1 - 2)] (0.5)~) 

= 0.25(1 - ,~2) 

Example 4: p(c~) = v211 = 0.25(1 - 21)2(1 - 22) 2. 

Conclusions 

Breeding programs must reconcile two conflicting 
pressures: to ensure a high probability of success and to 
use resources efficiently. Determining the minimum 
sample size needed becomes increasingly difficult when 
more genes are considered and when there is linkage 
among these genes. We have modelled genetic situ- 
ations involving gametophytic and sporophytic sys- 
tems of two or more loci. We have developed a method 
of determining the minimum sample size needed to 
produce with a specified probability at least m individ- 
uals of a desired genotype. Since the determination of 
sample size depends only on the probability p of ob- 
serving the desired event and the number m of desired 
individuals, our method is applicable at both 
gametophytic and sporophytic levels. Our method is 
also applicable not only to genotypes controlled in 
simple Mendelian fashion, but also to genotypes with a 
structure made more complex by linkage in coupling 
or repulsion of some of the genes of interest, or by 
factors affecting the survival or success of a gamete or 
an individual of a specific genotype, or by both of these 
departures from Mendelian inheritance. 

This method is valid for any diploid genetic system. 
With suitable modifications, the method can also be 
applied to polyploid systems. For  ease of discussion, 
the assumption that each gene of interest governs a 
separate trait was made in describing the method; 
however, the method is equally valid for systems in 
which the genes of interest interact to govern a single 
oligo- or multi-genic trait or several such traits. Be- 
cause many traits important  for future variety develop- 
ment, such as considerations of yields, food/feed 
quality, and pest or stress resistance, are oligo- or 
multi-genic, the determination of sample size for selec- 
tion of such traits is of particular interest. 

Appendix 

Table 3 shows that for each fixed value of m, the required sample 
size n is inversely proportional to p when p is small. The linearity 
of the curves in Fig. 4 over the range where p is small also reveals 
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this. The inverse variation can be explained by using the fact that 
for given values of m, n, and p, the probability of obtaining less 
than m successes out of n trials is well approximated by the 
cumulative normal probability �9 [(m - 0.5 - np)/(np(1 - . / ) ) ) 1 / 2 3 .  

When p is near 0, the term 1 - p is virtually 1 and hence can be 
ignored, The required sample size is then well approximated by 
solving for n the equation 

1 -- ~[(m - 0.5 - np)/(np) 1/2 ] = c~, (A1) 

where re, p, and c~ are given. Notice that n and p enter this 
equation only in the product term np. Now hold m and c~ fixed 
and consider a different value of p, p' = cp. The required sample 
size corresponding to p' is well approximated by solving equa- 
tion (A1) with n and p replaced by n' and p', respectively. It is clear 
from p' = cp that n' = n/c. Thus, if p' equals 0. lp, n' will equal 10n. 
The solutions to (A1) are very good approximations to the 
required sample size for values of p very near 0, so the entries in 
each column of Table 3 display variation inversely proportional 
to p. Consequently, with p and n both graphed using logarithmi- 
cally scaled axes, the curves in Fig. 4 display linearity when p is 
very small. The approximation (A1) becomes less accurate as p 
increases, resulting in the gradual loss for larger p of both inverse 
proportionality in the columns of Table 3 and linearity in the 
curves of Fig. 4. 

Acknowledgments. We thank Sam Fridman for producing 
Figs. 3 and 4. 

References 

Hanson WD (1959) Minimum family sizes for the planning of 
genetic experiments. Agron J 51 : 711 715 

IMSL, Inc. (1989) IMSL Statistics/Library:Fortran Subroutines 
for Mathematical Applications - User's Manual. Ver. 1.1, vol. 
3, 891-892 

Laterrot H (1975) Localisation chromosomique de 12 chez la 
tomate controlant la resistance au pathotype 2 de Fusariurn 
oxysporum f. Lycopersici. Ann Am4lior Plantes 26:485-491 

Mansur LM, Hadder KM, Suarez JC (1990) A computer program 
for calculating the population size necessary to recover any 
number of individuals exhibiting a trait. J Hered 81:407-408 

Pelham J (1968) Disturbed segregation of genes on chromosome 
9 -  gamete promoter, Gp, a new gene. Rep Tomato Genet 
Coop 18:27 28 

Pelham J (1970) More information on Gp. Rep Tomato Genet 
Coop 20:38-39 

Rick CM (1965) Abortion of male and female gametes in the 
tomato determined by alMic interaction. Genetics 53:85-96 

Scully BT, Federer WT (1993) Application of genetic theory in 
breeding for multiple virus resistance. In:Kyle, MM (ed) 
Resistance to viral disease of vegetables: genetics and breed- 
ing. Timber Press, Portland, Oregon 

Sedcole JR (1977) Number of plants necessary to recover a trait. 
Crop Sci 17:667-668 

Zamir D, Tadmor Y (1986) Unequal segregation of nuclear genes 
in plants. Bot Gaz 147:355-358 


